How to Process and Print Black-and-White Film

Processing and printing your own films can be rewarding and fun. With a little practice, you’ll find it’s easy, too.

To process your film, you’ll need the following equipment:

- Lighttight film-processing tank that accepts the size of film you plan to process
- Darkroom graduate or a 16-oz (473 mL) measuring cup
- Darkroom thermometer
- Several quart jars or bottles (glass, stainless steel, or plastic) for processing solutions
- Stirring paddle to mix solutions
- Soft viscose sponge
- Darkroom timer or a clock with a sweep-second hand
- Scissors
- Bottle or magazine opener if you are processing film in size 135 magazines
- Protective gloves to prevent skin contact with chemicals
- Spring-type clothespins for hanging processed film to dry

To make prints, you’ll need this equipment:

- Safelight, such as a KODAK Darkroom Lamp with a KODAK OC Safelight Filter (light amber)
- Printing frame or enlarger
- 8 x 10-inch piece of heavy cardboard
- Four photographic processing trays a little larger than the largest prints you plan to make (or shallow pans or dishes made of glass, plastic, china, or stainless steel)
- Print squeegee or soft viscose sponge

To make prints the same size as your negatives, you need a printing frame or an enlarger and a piece of glass to hold the light-sensitive photographic paper in contact with your negatives during exposure. If you want to make enlargements, you need an enlarger with a negative holder that’s the right size for your negatives. You also need an easel to hold the paper in position below the enlarger lens.

Your photo dealer will be glad to help you select your equipment, including darkroom kits of basic items. Some of this equipment is listed under “KODAK DARKROOM AIDS.”

WHERE TO WORK

Because photographic films and papers are sensitive to light, you must handle them in a darkroom. To process film, you’ll need a darkroom only while you’re loading the film into a lighttight film-developing tank. But during this time, the room must be totally dark.

If you convert a room or a closet into a temporary darkroom for loading film into the tank, check it by staying in the room or closet for about 5 minutes with the lights out. If you can’t see a sheet of white paper placed against a dark background, your darkroom passes inspection. You can make areas around doors and windows lighttight by putting heavy cloth or black tape over the cracks.

For printing and enlarging, you do not need total darkness. Just be sure that the only light in the room is supplied by a suitable safelight lamp with an OC Safelight Filter, and keep the photographic paper at least 4 feet from the lamp.

Kitchens and bathrooms nearly always make the best places for temporary printing darkrooms because they provide three major essentials: running water, electrical outlets, and a good work surface. Use a sheet of plastic or a plastic tablecloth under the processing trays to protect the countertop from spills.

If possible, try to separate your darkroom into a wet area and a dry area. Use the dry area for enlarging and printing and for handling films, negatives, and photographic paper. Use the wet area for mixing chemicals and for all processing operations. Be sure to have a container of water for rinsing your hands to prevent contamination of your developer with other solutions. Use a clean towel to dry your hands thoroughly before handling films, negatives, and paper.

Note: For your safety, handle photographic chemicals and processing solutions with care, and keep them out of the reach of children. Some processing solutions can be stored and reused. Be sure to store them in a safe place. For safe-handling information for particular Kodak chemicals, see the product label or the Material Safety Data Sheet (MSDS). To obtain MSDSs, go to www.kodak.com/go/MSDS.

PROCESSING YOUR FILM

To process black-and-white film, you’ll need the following solutions:

- Film developer
- Stop bath or water
- Fixer
- KODAK Hypo Clearing Agent (optional)
- KODAK PHOTO-FLO 200 Solution (optional)

Kodak offers a number of black-and-white film developers as liquid concentrates or powders. For a list of developers, see “Chemicals.” KODAK PROFESSIONAL Xtol Developer is an excellent choice for all-around film developing. It is supplied as an easy-to-mix powder that you can mix and use at room temperature.
You’ll need to use a stop bath (or water), such as KODAK Indicator Stop Bath or KODAK EKTAFLO Stop Bath, after the developer.

You can choose from several fixers supplied as liquids or powders, which you can also use when you process your prints (see “CHEMICALS”). If you plan to process KODAK PROFESSIONAL T-MAX Films, we recommend using KODAK Rapid Fixer.

Label three of the glass, plastic, or stainless-steel bottles “Film Developer,” “Stop Bath,” and “Fixer.” Mix the three solutions according to the instructions packaged with the chemicals. The instructions give important information about proper mixing and handling, as well as the recommended development times, temperatures, and capacities.

You can also use KODAK Hypo Clearing Agent to shorten washing times, and KODAK PHOTO-FLO 200 Solution after washing to minimize water marks and streaks on film as it dries.

**Before Processing**

Mix all solutions before loading your film into the film tank. The solutions should be at a temperature of 65 to 75°F (18 to 24°C) when you use them. You can cool or warm the solutions quickly by setting the bottles of solution in a pan of cold or warm water.

It’s easy to become disoriented in the dark, so be sure you know how to load your film tank before turning out the lights. (If necessary, practice with a roll of waste film with the lights on and then in total darkness until you can load the tank with confidence.)

Line up the equipment you will need so that you’ll be able to locate each item quickly when the room is dark:

- film-processing tank, tank cover, film apron or reel, exposed film, scissors, and a bottle opener or 135 magazine opener if you are processing size 135 film.

Before you turn off the lights, pour the developer solution into the tank. Then turn off both the room lights and the safelights.

**IN TOTAL DARKNESS**, open your film as follows:

- **135 Film in Magazines:** Hold the magazine with the long spindle end down. Use a hook-type bottle opener to pry off the upper end cap. Rap the long end of the magazine sharply on a hard surface to release the film if it doesn't come out easily. Be careful of any sharp edges. (Leave the film attached to the spool until after you have loaded your tank apron or reel. Then cut the film off the spool with your scissors.)

- **Roll Film:** Tear off the “EXPOSED” sticker. Separate the backing paper from the film, and cut free the end that is attached to the paper.

Handling the film by the edges, load it onto the reel according to the instructions for your tank. Then follow the processing steps in the table below:

<table>
<thead>
<tr>
<th>Processing Step</th>
<th>Time</th>
<th>Agitation and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Developer</td>
<td>Use the development time for your film/developer/temperature combination given in the film or developer instructions.</td>
<td>Smoothly lower the loaded film reel into the developer solution in the tank, and attach the top to the tank. Turn on the lights. Firmly tap the tank on the top of the work surface to dislodge air bubbles. Provide initial agitation for 5 seconds, and then repeat the 5-second agitation at 30-second intervals for the remainder of the development time. (See the table below for agitation techniques for different types of tanks.) Drain the tank.</td>
</tr>
<tr>
<td>2. Stop Bath</td>
<td>30 seconds</td>
<td>Pour in the stop bath, and agitate continuously. Drain the tank.</td>
</tr>
<tr>
<td>3. Fixer</td>
<td>2 to 4 minutes with a liquid-concentrate fixer OR 5 to 10 minutes with a powder fixer</td>
<td>Pour in the fixer. Agitate continuously for the first 30 seconds, and then at 30-second intervals. Drain the tank. <strong>IMPORTANT:</strong> With KODAK PROFESSIONAL T-MAX Films, fixer will be exhausted more rapidly than with other films. Fix for 3 to 5 minutes in KODAK Rapid Fixer or 5 to 10 minutes in KODAK Fixer, KODAFIX Solution, or POLYMAX T Fixer. If negatives show a pink stain after fixing, the fixer may be near exhaustion or the fixing time was too short.</td>
</tr>
<tr>
<td>4. Rinse</td>
<td>30 seconds</td>
<td>Rinse the film in the tank under running water.</td>
</tr>
<tr>
<td>5. Hypo Clearing Agent</td>
<td>1 to 2 minutes</td>
<td>Agitate continuously for the first 30 seconds and then at 30-second intervals.</td>
</tr>
<tr>
<td>6. Water Wash</td>
<td>5 minutes after Hypo Clearing Agent OR 20 to 30 minutes without Hypo Clearing Agent step</td>
<td>Remove the top from the tank. Run the wash water at least fast enough to provide a complete change of water in the tank in 5 minutes. For rapid washing in a small tank, fill the tank to overflowing with fresh water and then dump it all out. Repeat this cycle 10 times.</td>
</tr>
<tr>
<td>7. Wetting Agent</td>
<td>30 seconds</td>
<td>Provide gentle agitation for 5 seconds of the total time. To reduce drying scum, mix KODAK PHOTO-FLO Solution with distilled water in areas that have hard water.</td>
</tr>
<tr>
<td>8. Dry</td>
<td>As necessary</td>
<td>Remove the film from the reel, and hang it up to dry in a clean, dust-free place.</td>
</tr>
</tbody>
</table>

* Times are approximate. See the film or developer instructions.
Agitation is very important for even development of the film. Follow the procedure below for the type of tank you are using:

<table>
<thead>
<tr>
<th>Type of Agitation</th>
<th>Type of Tank</th>
<th>Invertible</th>
<th>Non-Invertible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Agitation</td>
<td>Tap tank on work surface to dislodge air bubbles. Provide 5 to 7 inversion cycles in 5 seconds, i.e., extend your arm and twist your wrist 180°.</td>
<td>Tap tank on work surface to dislodge air bubbles. Rotate film reel 4 or 5 times during first 5 to 10 seconds.</td>
<td></td>
</tr>
<tr>
<td>Subsequent Agitation</td>
<td>At 30-second intervals, repeat 5 to 7 inversion cycles in 5 seconds.</td>
<td>At 30-second intervals, rotate film reel 4 or 5 times.</td>
<td></td>
</tr>
</tbody>
</table>

After processing, thoroughly wash and dry all equipment that came into contact with chemical solutions. When the film is thoroughly dry, cut it into shorter strips of negatives to make proof sheets.

Always store your negatives in sleeves or envelopes away from dust and extreme temperature and humidity.

**MAKING PRINTS**

Kodak black-and-white photographic papers are available in a wide variety of sizes, speeds, contrasts, surface textures, image tones, stock tints, and weights.

To start, we suggest that you use KODAK PROFESSIONAL POLYCONTRAST IV RC Paper for both your contact prints and your enlargements. The resin coating on this paper permits short processing and drying times. When you expose it with KODAK POLYMAX Filters, you can produce different degrees of contrast in the prints you make from one package of paper.

When you become more proficient in printing and enlarging, you may want to try other papers. See “More Information” for publications on Kodak papers.

**Making a Proof Sheet**

Proof sheets are photographic prints that include many images from strips of negatives. The print images are the same size as your negatives. They can help you choose the best negatives for enlarging, and they also make a good record of your prints to file with your negatives.

To make a proof sheet, you’ll need your strips of negatives and a printing frame with a 7-watt light bulb or an enlarger and a piece of glass.

You can make a printing frame by using a piece of window glass or clear Plexiglas and a piece of composition board. Both pieces should be the same size. Put one piece on top of the other and use wide adhesive tape to make a hinge connecting the two pieces. (If you use glass, it’s a good idea to tape the remaining edges so that you won’t cut yourself.)

Before exposing your proof sheet, prepare your paper-processing solutions. You’ll need the following chemicals:

- Paper developer
- Stop bath
- Fixer

Kodak has a variety of black-and-white paper developers to choose from. Some are designed to enhance paper characteristics, such as a warm image tone. A good all-around developer to start with is KODAK DEKTOL Developer, diluted 1:2 (1 part stock solution to 2 parts water).

You can use the same type of stop bath and fixer that you used to process your film, but be sure you mix it properly. Most fixers require a 1:3 dilution for use with film and a 1:7 dilution for paper. (See the fixer instructions.)

Mix the developer, stop bath, and fixer according to the instructions packaged with the chemicals, and store the solutions in labeled bottles.

When you are ready to make your proof sheets, arrange four trays on the work surface in your darkroom. Label them “Developer,” “Stop Bath,” “Fixer,” and “Wash.”

Working from left to right, pour the developer in the first tray, stop bath into the second tray, and fixer into the third tray. Fill these trays to a depth of about one-half inch of solution. Fill the fourth tray with water. Adjust the solutions to 65 to 70°F (18 to 21°C) by placing a small, deep bowl of either warm or cool water into the tray of solution. Be careful not to spill any water into the solutions.

Be sure your hands are clean and dry before handling your negatives and paper. Now you are ready to expose your proof sheet. Follow these steps:

1. Turn out all lights except the recommended safelight (see the label on the package for the recommended safelight illumination). The safelight should be at least 4 feet from the paper. Remove one sheet of paper from the package, and rewrap the remaining paper to protect it from the printing light.

2. Place your strips of negatives so that their emulsion side faces the emulsion side of the paper. Cover the paper and negatives with the glass. The negatives should face the light source.

3. Make the exposure:

If you’re using a printing frame and a 7-watt bulb, hang the bare bulb 2 feet above the frame and turn it on for about 10 seconds. A 10-second exposure should be right, but you may have to experiment to get the correct exposure. If the processed print appears too light, make another proof sheet with double the exposure time; if it’s too dark, use half the time.

If you’re using an enlarger light source to make your proof sheet, place the empty negative carrier in the enlarger, and set the lens at f/11. Adjust the enlarger height so that the light covers an area just larger than the size of your paper. Expose for about 8 seconds. Again, you may have to experiment to get the correct time.
Processing Your Proof Sheet
1. Take the exposed paper from the printing frame or enlarger easel and slide it completely into the developer, emulsion side down. Then turn the paper over, and agitate by rocking the tray gently throughout the development time (1 minute for POLYCONTRAST IV RC Paper in DEKTOL Developer). Tip up first one side, then the adjacent side.
2. Take the paper out of the developer and let it drain for 5 seconds. Then immerse it in the stop-bath solution for at least 10 seconds, agitating thoroughly as in Step 1.
3. Remove the paper from the stop bath, drain it for 2 seconds, and slip it into the fixer. Agitate frequently for 2 minutes. You can turn on the room lights after about 30 seconds. (If you have more than one print in the tray, keep them separated.) Do not overfix.
4. Transfer your print to the wash tray. Wash for 4 minutes in gently running water at a temperature between 50 and 85°F (10 and 30°C). Avoid overwashing.
5. Use a soft viscose sponge or a soft rubber squeegee to remove excess water from the print surfaces. Dry the print on a flat surface at room temperature with good air circulation. You can speed drying by blowing warm air from a portable hair dryer onto the print. Make sure that the temperature of the air is below 190°F (88°C).

ENLARGING
Your proof sheet should serve as a good guide for selecting the negatives you want to enlarge. Study the images to find the ones with the best composition and exposure level (neither too dark nor too light). When you’ve selected a negative you want to enlarge, it’s a good idea to make a test strip or print to determine the exposure you need to make a good enlargement. (After you’ve gained some experience, you won’t need to make a test strip or print for every negative you print.)

Making Test Exposure Strips and Prints
Test exposure prints and strips serve the same function, but are different in size. A test print is a sheet of photographic paper exposed and processed to find out if your exposure and contrast estimates are correct. (Although your first test print may look good enough to be the final print, don’t be disappointed if it doesn’t.)

A test exposure strip is a 1- or 2-inch-wide strip of enlarging paper cut from a larger sheet. Because it’s more economical to expose test strips than full test prints, we’ll focus on test strips here.
1. Hold the negative gently by the edges and remove dust with a camel’s-hair brush or by blowing compressed air across the surfaces. Small cans of compressed air appropriate for photographic uses are available from photo dealers. Place the negative in the correct negative carrier, emulsion side down. Slide a sheet of smooth white photo paper or a scrap sheet of photo paper under the guides of the easel to serve as a focusing aid.
2. Turn on the enlarger light and set the enlarger lens at its widest opening (the lowest f-number on the lens mount). Then raise or lower the enlarger head and adjust the easel guides to get the size and picture composition you want. For best viewing of the image on the easel, work with the safelight on and the room lights off.
3. Adjust the focus control on the enlarger lens to bring your picture into the sharpest focus possible. Then change the lens opening to f/8 and turn off the enlarger light.
4. Working only by safelight, open the easel and insert the paper test strip emulsion side up. Be careful to place the strip so that it records a good sampling of important image tones in the negative. Close the easel or use masking tape to hold the strip flat.
5. Make a 5-second exposure of the entire strip. Then cover one fifth of the strip with the sheet of heavy cardboard, and expose for 2 seconds. Cover an additional fifth of the strip, and expose for 3 seconds. Cover another fifth, and expose for 4 seconds. Cover another fifth, and expose for 6 seconds. Then turn off the enlarger light. This will provide a series of five exposures ranging over 2 stops about 1/2 stop apart, as shown:

| Exposure Time | 20 sec | 14 sec | 10 sec | 7 sec | 5 sec |

6. With only the safelight on, process the strip as described earlier under “Processing Your Proof Sheet.” Then examine it under room lights to determine which portion of the strip has the best exposure. Note the exposure time for the portion you select. The 5-second exposure will be the lightest. If all the steps are too light, open up the lens (lower f-number) or increase the exposure time. If all the steps are too dark, close down the lens or decrease the exposure time.

If the strip looks flat or muddy, use a higher-numbered POLYMAX Filter in the enlarger to increase the contrast. If it has a very harsh, contrasty appearance, use a lower-numbered filter.

Now that you know the approximate exposure and best contrast, you may want to make one final test strip, with very small differences in exposure time between steps, to determine the very best overall exposure time before making a full print.

When you’re satisfied with your exposure test, place a sheet of paper, emulsion side up, under the masking guides on the enlarger easel. Turn on the enlarger and expose for the time determined by your tests. Turn off the enlarger. Remove the sheet of paper, process it, and dry it.

Safe Disposal of Used Chemicals. Be sure to dispose of chemicals properly. To a large extent, exactly how you do that will depend on what the chemicals are, the volume of the solutions you discard, and whether you are discharging them into a sewer or into a septic system. Generally, you can pour small amounts of used photographic solutions down the drain without ill effect. Discard the solutions one at a time (to
avoid unwanted chemical reactions). Rinse the sink thoroughly and flush the drain with plenty of clean water after dumping each solution. Because the discharge or disposal of spent photographic solutions may be subject to local, state, or federal laws, contact the appropriate authorities to determine the requirements that apply to your area.

CHEMICALS

You can purchase the following Kodak chemicals from dealers who sell Kodak Professional products.

Film Developers

KODAK XTOL Developer. Provides excellent image quality with fine grain and high sharpness in both normally processed and push-processed films. It’s supplied as a powder for easy, room-temperature mixing.

KODAK T-MAX Developer. Produces excellent image quality and improved tone reproduction (increased shadow detail) in both normally processed and push-processed films. It’s supplied as a liquid concentrate.

KODAK Developer D-76. A general-purpose developer that produces moderately fine grain, full emulsion speed, and maximum shadow detail. It comes in powder form.

KODAK HC-110 Developer. A highly active developer supplied in liquid-concentrate form. It produces negatives of similar quality to those obtained with Developer D-76, but requires shorter development times.

KODAK MICRODOL-X Developer. An excellent fine-grain developer designed to produce low graininess and high sharpness of image detail. It’s particularly good for developing small negatives from which you want to make big enlargements. MICRODOL-X Developer is available in both powder and liquid forms.

Stop Baths

After development, you’ll need a stop bath for rinsing your film and prints. You can use KODAK Indicator Stop Bath (1:63) or KODAK EKTAFLO Stop Bath (1:31). Both are available as liquid concentrates, and both have built-in indicators to signal when the chemicals are exhausted and should be discarded.

Fixing Baths

KODAK Rapid Fixer. An easy-to-use liquid concentrate for very rapid fixing of films and normal fixing of prints. It consists of two concentrates that you add to water to prepare the fixing bath. Dilute 1:3 for film and 1:7 for paper.


KODAK Fixer. Recommended for general use with films and papers. It comes in powder form. Just mix with water for immediate use.


Paper Developers

KODAK DEKTOL Developer. For neutral and cold-toned images on papers such as KODAK POLYCONTRAST IV RC, POLYMAX II RC, KODABROME II RC, and KODAK POLYMAX Fine-Art Papers. It’s supplied in powder form. Dilute 1:2 for use.

KODAK POLYMAX T Developer. For neutral or cold-toned images on papers such as POLYCONTRAST IV RC, POLYMAX II RC, KODABROME II RC, and POLYMAX Fine-Art Papers. It’s supplied as a liquid concentrate. Dilute 1:9 for use.

Other Chemicals

KODAK Hypo Clearing Agent. Shortens washing times and makes possible more thorough washing of films and prints. It reduces the wash time to 5 minutes for films, 10 minutes for single-weight papers, and 20 minutes for double-weight papers. This water-saving chemical is not recommended for water-resistant, resin-coated (RC) papers, which already have a short wash time (4 minutes). Dilute 1:4 for use.

KODAK PHOTO-FLO 200 Solution. A liquid concentrate that minimizes water marks and drying streaks on film, and speeds drying. Dilute 1 part concentrate to 200 parts water for use.

KODAK Toners. For altering the image tone of black-and-white prints and prolonging print life. Several Kodak toners are available for producing various tones, depending on the toner/paper combination and the dilution of the toner.

KODAK DARKROOM AIDS

KODAK Darkroom Lamp. For use in a wall socket or a drop-cord socket. Sturdy metal. Accepts circular 5½-inch safelight filters (not included).

KODAK 2-Way Safelight. For use in either a wall socket or a ceiling socket. Swivels to provide direct or indirect illumination. Holds a 3¾ x 4½-inch safelight filter (not included).

KODAK Safelight Filters. Supplied in a variety of sizes and colors for use with papers and certain films.
MORE INFORMATION

Kodak has many publications to assist you with information on Kodak products, equipment, and materials.

Additional information is available on the Kodak website and through the U.S.A./Canada faxback system.

The following publications are available from dealers who sell Kodak products, or you can contact Kodak in your country for more information.

F-2  Pathways to Black and White
F-4016  KODAK PROFESSIONAL T-MAX Films
F-4017  KODAK PROFESSIONAL TRI-X Films
F-4018  KODAK PROFESSIONAL PLUS-X Films
G-10  KODAK AZO Paper
G-16  KODABROME II RC Paper
G-4037  KODAK POLYCONTRAST IV RC Paper
G-23  Toning KODAK Black-and-White Materials
G-24  KODAK POLYMAX Fine-Art Paper
G-27  KODAK PANALURE SELECT RC Paper
J-24  KODAK HC-110 Developer
J-78  KODAK Developer D-76
J-86  KODAK T-MAX Developers
J-87  KODAK T-MAX 100 Direct Positive Film
      Developing Outfit
J-109  KODAK XTOL Developer
K-4  How Safe Is Your Safelight?

The following books are available from photo-specialty dealers who sell Kodak products:

F-5  KODAK Professional Black-and-White Films
R-20  KODAK Black-and-White Darkroom DATAGUIDE

For the latest version of technical support publications for KODAK PROFESSIONAL Products, visit Kodak on-line at:
http://www.kodak.com/go/professional

If you have questions about KODAK PROFESSIONAL Products, call Kodak.
In the U.S.A.:
  1-800-242-2424, Ext. 19, Monday–Friday
  9 a.m.–7 p.m. (Eastern time)
In Canada:
  1-800-465-6325, Monday–Friday
  8 a.m.–5 p.m. (Eastern time)

Note: The Kodak materials described in this publication are available from dealers who supply KODAK PROFESSIONAL Products. You can use other materials, but you may not obtain similar results.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes
# Table of Contents

**Monitoring and Troubleshooting KODAK Black-and-White Film Processes**  
3

Why Should You Monitor Your Process? ........................................ 3

How Is a Process Monitored? .................................................. 3

Getting Started ................................................................. 4
  KODAK Black-and-White Film Process Control Strips ................ 4
  Starting Up Your Process .................................................. 5
  Determining an Optimum Development Time for Control Strips ...... 6
  Getting Your Process in Control ......................................... 7
  Detecting and Adjusting an Underreplenished Process ............ 7

Process Monitoring ............................................................. 8
  Frequency of Processing Control Strips ............................... 8
  KODAK Plotting Form for Black-and-White Film Processing
  (KODAK Publication No. Y-30) ......................................... 9
  Adjusting Your Process to Aim .......................................... 10

Control Charts ................................................................. 11
  Evaluating Control-Chart Plots ........................................ 11
  Causes of an Out-of-Control Process ................................ 12

Diagnosing and Troubleshooting Processing Problems .................. 12
  Correcting a Process That is Out of Control ....................... 12
  Diagnostic Charts ......................................................... 12
  Troubleshooting from the Appearance of Processed Film ........ 39

More Information on Using Control Strips ............................... 42
  Changing to a New Batch of Control Strips ......................... 42
  Determining Starting-Point Development Times for Different KODAK Black-and-White Films ................................. 42

Safe Handling of Photographic Chemicals ................................ 44

Worksheet 1 ......................................................................... 45

FORM Y-30 ........................................................................... 47
WHY SHOULD YOU MONITOR YOUR PROCESS?
Consistently high quality is good business. It means satisfied customers because they get good results from their film, which in turn means new and repeat business.

High-quality photographic processing depends on meeting and maintaining process and product standards. You can meet and maintain these standards by following the manufacturer’s processing and printing recommendations, and by monitoring and controlling your process. Process monitoring enables you to ensure that your process is operating consistently within tolerances that yield high-quality negatives. When you monitor your process carefully and your process stays in control, you reduce waste, avoid downtime, and increase customer satisfaction, employee productivity, and profits.

Process control provides the following benefits:
- Process consistency
- Higher overall quality of processed film
- Greater total yield of acceptable film, or processing capacity
- Early detection of process and/or equipment problems
- Less waste of time, chemicals, and film
- Increased printing productivity
- Greater customer satisfaction

The two factors that most affect the quality of black-and-white negatives are exposure and processing. If your process has not been optimized, it is possible that your customers have adjusted their film exposure to compensate. Taking action to correct an out-of-control process may produce unexpected results in your customers’ negatives. If you make major process changes after you begin using control strips, encourage your customers to expose and process test rolls to determine if you are still producing quality negatives that suit your printing operation.

If you mix chemicals properly and use the correct settings for the process cycle, the contrast index, speed, and D-min of your processed control strip will plot in control, and your process will produce high-quality negatives. Deviations from normal conditions can cause under- or overdevelopment. Underdevelopment will result in a decrease in density and contrast in your control strips, and a loss of density, contrast, and shadow detail in your customers’ negatives. Overdevelopment will produce an increase in density and contrast in your control strips, and an increase in density and contrast with blocked highlights in your customers’ negatives.

Although control plots are intended to show a problem before it begins to affect customer negatives, you can usually confirm a problem by visually inspecting customer film when your control plot signals a problem. To analyze and correct a problem, determine the cause by following a logical sequence when you check your control plots and customer negatives.

HOW IS A PROCESS MONITORED?
Process monitoring is a method for regularly checking the condition of your process to ensure that it is operating according to a standard. It helps prevent reduced negative quality by detecting potential problems.

To monitor your process, you will process KODAK Black-and-White Film Process Control Strips; determine the contrast index, speed, and D-min; and then compare those values to aim values. You will plot your process deviations from aim on a control chart. Control charts provide a running record of process quality, and do the following:
- indicate if the process is within acceptable limits
- show trends in the process and signal you to make changes to keep the process in control
- help determine the causes of process problems
- allow you to check adjustments made to the process

Deviations from normal conditions can cause under- or overdevelopment. Underdevelopment will result in a decrease in density and contrast in your control strips, and a loss of density, contrast, and shadow detail in your customers’ negatives. Overdevelopment will produce an increase in density and contrast in your control strips, and an increase in density and contrast with blocked highlights in your customers’ negatives.
The following terms are frequently used in process monitoring:

**Control Strips**—Precisely exposed strips of film used to monitor your process.

**Sensitometric Parameters**—The contrast index (CI), speed, and minimum density (D-min) of the control strip are the critical sensitometric parameters in black-and-white film processing. You will use the densities of the control strip to calculate contrast index and speed and to assess the activity of your process.

**Contrast Index (CI)**—A measure of the degree of development that determines how well the density range of a normally exposed negative will print on a grade 2 (i.e., normal-contrast) paper.

**Speed**—A value that represents a measure of the ability of your process to develop shadow detail. This value is an arbitrary number that relates only to the control strip; it is not an ISO/ASA speed.

**D-min**—A measure of the minimum density (base-plus-fog of unexposed film) produced by your process.

**Aims**—These are the values to which you compare the contrast index, speed, and D-min values of your control strips. The aims for contrast index, speed, and D-min are preprinted on the KODAK Plotting Form for Black-and-White Film Processing, KODAK Publication No. Y-30.

**Tolerances**—Tolerances are the deviations from aim allowed before you must take corrective action. They include action limits and control limits.

**Action Limits**—The action limits are the boundaries of the aim operating range of the process. When the variations from aim for contrast index, speed, and D-min plot between the upper and lower action limits (in the acceptable range), your process is in control. Regions exceeding the action limits are shaded light gray on Form Y-30. If the variation from aim for any parameter exceeds the action limit and plots in the light gray area, it is an “early warning.” You can still safely process customer film, but you should check for the cause of the shift and correct it.

**Control Limits**—The control limits define the maximum tolerances that are acceptable for processing customer film. Regions exceeding the control limits are shaded dark gray on Form Y-30. If any variation from aim plots beyond the control limit, results will be unsatisfactory for shadow density and/or contrast. Stop processing customer film until you find the cause and correct it.

**Control Chart**—A control chart is a plot of your variations from aim over a period of time. Plots on your control chart will confirm the control of your process or provide a clear record of variations in the performance of your process.

**GETTING STARTED**

To begin monitoring your process, you will need—

- KODAK Black-and-White Film Process Control Strips (CAT No. 180 2990)
- an electronic densitometer with a “visual” mode
- copies of the KODAK Plotting Form for Black-and-White Film Processing (KODAK Publication No. Y-30)

**KODAK Black-and-White Film Process Control Strips**

Kodak supplies KODAK Black-and-White Film Process Control Strips for monitoring the processing of Kodak black-and-white films in KODAK Chemicals. These strips are preexposed neutral-density scales on KODAK PROFESSIONAL T-MAX 400 Film / 4053. Each strip has five neutral-density steps; a raised dimple is located on the emulsion side at the low-density end for orientation. You will use the densities of the following steps to calculate the contrast index (CI) and speed of your process:

- Step 1 D-min
- Step 2 Toe density (TD)
- Step 3 Low density (LD)
- Step 4 High density (HD)
- Step 5 D-max

These strips are supplied in a box of five foil packages that contain 10 strips each. The ends of the strips are perforated for use with standard control-strip racks. **Keep control strips frozen to maintain consistency.** Store and handle control strips according to the instructions packaged with them. Use a densitometer in the visual mode to read the control-strip densities.

You can use these control strips to assist in determining development times when you start up your process, to monitor your process, or to determine starting-point development times for other Kodak black-and-white films.
Note: Monitor your densitometer to ensure that it is calibrated and operating properly. Drifting and inaccurate readings occur most often in the higher densities. Proper densitometer performance is especially important for accurate monitoring of your process with KODAK Black-and-White Film Process Control Strips. Keep a record of all maintenance (e.g., filter changes, lamp changes, etc.) performed on your densitometer.

Starting Up Your Process
Follow the procedure below when you first start using KODAK Black-and-White Film Process Control Strips. You should also follow these steps whenever you start up a new machine, and if you replace your developer and replenisher with a different type of developer and replenisher.

1. Process a control strip at the time and temperature that you use to process PROFESSIONAL T-MAX 400 Film.* Locate the raised dimple on the control strip; it is located at the low-density end of the strip. The raised side of the dimple is on the emulsion side of the strip. Process the strip with the emulsion facing in the same direction as the emulsion side of the film you process. In continuous processors, process the low-density end of the strip first; in rack-and-tank processors, fasten the strip to a film clip with the low-density end up.

* If you do not process PROFESSIONAL T-MAX 400 Film, follow the procedure described under Determining an Optimum Development Time for Control Strips.

2. Measure the densities of the strip in the center of the D-min, TD, LD, HD, and D-max steps with a densitometer in the visual mode.

3. Calculate the contrast index of your strip by using one of the following formulas or Worksheet 1. The first formula has more steps, but it will give you an answer that is more accurate than the second formula will provide.

   **Formula 1**
   \[ CI = 0.128 + (0.267 \times D_{\text{min}}) - (0.969 \times TD) + (0.454 \times LD) + (0.183 \times HD) + (0.039 \times D_{\text{max}}) \]
   **Formula 2**
   \[ CI = \frac{(HD - TD)}{2.26} + 0.10 \]

4. Calculate your variation from aim for contrast index by subtracting 0.58† from the number you determined in step 3.

5. Calculate the speed value of your strip by using this formula:

   \[ \text{Speed} = 140.9 \times (TD - D_{\text{min}}) + 335 \]

6. Calculate your variation from aim for speed by subtracting 355**: from the number you determined in step 5.

7. Calculate your variation from aim for D-min by subtracting 0.06‡‡ from the D-min density reading.

† To check the uniformity of your developer tank, you can position control strips to run through several positions in the tank.
‡ 0.58 is the contrast-index aim for printing negatives with a diffusion enlarger; use 0.43 if you will print negatives with a condenser enlarger.
** 355 is the speed-value aim for a replenished process for producing negatives that you will print with a diffusion enlarger; your speed value may be slightly higher when you use fresh developer. The speed-value aim for producing negatives for printing with a condenser enlarger will be between 340 and 350. The speed value is not an ISO/ASA speed.
‡‡ Use 0.09 as your aim for D-min if you process film in KODAK DURAPFLO RT Developer Replenisher.
8. Plot your variations from aim for contrast index, speed, and D-min on the KODAK Plotting Form for Black-and-White Film Processing, KODAK Publication No. Y-30. (For more information, see Using Form Y-30.)

9. Evaluate the control status of your process by looking at the plots on Form Y-30.

If your variations from aim plot within the action limits (i.e., the white area on each grid on Form Y-30), your process is in good control. Use the development time for this strip for all subsequent strips that you process; proceed to Process Monitoring.

If any of your variations from aim plot on or beyond the action limits (i.e., in the light or dark gray area on each grid on Form Y-30), proceed to Getting Your Process in Control.

Determining an Optimum Development Time for Control Strips

In many situations, your variations from aim for the first control strip that you process will plot out of control because the strip was under- or overdeveloped, i.e., your development time was too short or too long. To determine an optimum development time for your control strip, follow the procedure below:

1. Process a control strip at the times given below. Record the development time on each strip.
   - For dip-and-dunk processes—4 minutes, 6 minutes, 8 minutes, 10 minutes, and 12 minutes
   - For roller-transport processors using KODAK DURAFLO RT Developer Replenisher—60 seconds, 90 seconds, 120 seconds, and 240 seconds
2. Measure the densities of the strips in the center of the D-min, TD, LD, HD, and D-max steps with a densitometer in the visual mode.
3. Calculate the contrast index of each of the strips; use one of the following formulas or Worksheet 1.

   **Formula 1**
   \[
   CI = 0.128 + (0.267 \times D_{\text{min}}) - (0.969 \times TD) + (0.454 \times LD) + (0.183 \times HD) + (0.039 \times D_{\text{max}})
   \]

   **Formula 2**
   \[
   CI = \frac{(HD - LD)}{2.26} + 0.10
   \]

4. If one of the contrast-index values you calculated in step 3 is within ±0.02 of your contrast-index aim, record the development time, and use it to process your control strips.

   If none of the values is within ±0.02 of your contrast-index aim, find the strip with the contrast-index value that is closest to your aim. Then increase or decrease the development time to fine-tune it, and process another control strip. Measure the densities of each step of the strip, and calculate the contrast index. If the contrast index is within ±0.02 of your contrast-index aim, record the development time, and use it to process your control strips. If the contrast index is not within ±0.02 of your contrast-index aim, increase or decrease the development time again to produce a contrast index that is closer to aim.

5. Return to step 1 under Starting Up Your Process. Use the development time that you determined in step 4 (above) to process a control strip instead of using your development time for T-MAX 400 Professional Film.

**Note:** You can also use the strips processed in the procedure above to determine development times for other Kodak black-and-white films; see Determining Starting-Point Development Times for Different KODAK Black-and-White Films.
**Getting Your Process in Control**

After you process your first control strip, if one or more of the variations from aim plot on or beyond the action limits, use the table below to troubleshoot the process.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation from aim for CI plots on or beyond the action limits</td>
<td>Follow the procedure under <em>Determining an Optimum Development Time for Control Strips.</em></td>
</tr>
<tr>
<td>Variations from aim for CI and speed plot on or beyond the action limits</td>
<td>Follow the procedure under <em>Detecting and Adjusting an Underreplenished Process.</em></td>
</tr>
<tr>
<td>Variations from aim for CI, speed, and D-min plot on or beyond the action limits</td>
<td></td>
</tr>
<tr>
<td>Variation from aim for speed plots on or beyond the action limits</td>
<td></td>
</tr>
<tr>
<td>Variations from aim for speed and D-min plot on or beyond the action limits†</td>
<td></td>
</tr>
</tbody>
</table>

* You may have to repeat this procedure if you make adjustments to correct for an underreplenished process.
† If you are using a freshly mixed developer, be sure that it was mixed properly; some fine-grain developers will yield low speed values.

**Detecting and Adjusting an Underreplenished Process**

If you are just starting to process control strips and you have not recently replaced your developer tank solution, it is possible that your replenishment rate has been too low. You can use one of the following procedures to adjust your process based on where your variation from aim for speed plots.

If your variation from aim for speed plots between the action and control limits below aim (i.e., in the light gray area):

1. Replace 25 to 50 percent of your developer tank solution with fresh solution. This will quickly reduce the seasoning of the developer to an acceptable level.
2. Increase your replenishment rate by 10 percent.
3. Return to the procedure described under *Starting Up Your Process.*

If your variation from aim for speed plots beyond the control limit below aim (i.e., in the dark gray area):

1. Replace your developer tank solution with fresh solution.
2. Increase your replenishment rate by 10 percent.
3. Return to the procedure described under *Starting Up Your Process.*
PROCESS MONITORING

Begin monitoring your process after you have established an optimum development time for your control strip—i.e., a time that yields contrast index, speed, and D-min values that plot within the action limits for your process.

1. Process a control strip at your optimum development time.

   Note: If your processed control strips show a severe magenta (pink) stain after fixing, your fixer may be near exhaustion, or you may not have used an adequate fixing time. If the stain is slight, it will not affect the density values. If it is severe, refix the strip in fresh fixer; check the fixer in your processor.

2. Measure the densities of the strip in the center of the D-min, TD, LD, HD, and D-max steps with a densitometer in the visual mode.

3. Calculate the contrast index of your strip by using one of the following formulas or Worksheet 1. The first formula has more steps, but it will give you an answer that is more accurate than the second formula will provide.

   **Formula 1**
   
   \[
   CI = 0.128 + (0.267 \times D\text{-}min) - (0.969 \times TD) + (0.454 \times LD) + (0.183 \times HD) + (0.039 \times D\text{-}max)
   \]

   **Formula 2**
   
   \[
   CI = \frac{(HD - LD)}{2.26} + 0.10
   \]

4. Calculate your variation from aim for contrast index by subtracting 0.58* from the number you determined in step 3.

5. Calculate the speed value of your strip by using the formula given below.

   \[
   \text{Speed} = 140.9 \times (TD - D\text{-}min) + 335
   \]

6. Calculate your variation from aim for speed by subtracting 355† from the number you determined in step 5.

7. Calculate your variation from aim for D-min by subtracting 0.06‡ from the D-min density reading.

8. Plot your variations from aim for contrast index, speed, and D-min on the KODAK Plotting Form for Black-and-White Film Processing, KODAK Publication No. Y-30. (For more information, see Using Form Y-30.)

9. Evaluate the control status of your process by looking at the plots on Form Y-30.

   If your variations from aim plot within the action limits (i.e., in the white area on each grid on Form Y-30), your process is in control.

   If your process runs consistently near one of the action limits, you may want to adjust your process; see Adjusting Your Process to Aim.

   If any of your variations from aim plot outside the action limits (i.e., in the light or dark gray area on each grid on Form Y-30), proceed to Diagnosing and Troubleshooting Processing Problems.

**Frequency of Processing Control Strips**

After your process is in control, we recommend that you process a control strip—

- at the beginning of the day or shift, before processing customer film
- at regular intervals with customer film
- when you encounter processing problems
- after you have taken corrective action
- when you start up your process with fresh tank solutions
- at the end of the day or shift

Calculate and plot your variations from aim for contrast index, speed value, and D-min for each control strip that you process. Evaluate the control status of your process by looking at the plots on Form Y-30; they will confirm the control of your process or provide a clear record of variations in the performance of your process. For information on troubleshooting your process, see Diagnosing and Troubleshooting Processing Problems.

---

* 0.58 is the contrast-index aim for printing negatives with a diffusion enlarger; use 0.43 if you will print negatives with a condenser enlarger.

† 355 is the speed-value aim for a replenished process for producing negatives that you will print with a diffusion enlarger; your speed value may be slightly higher when you use fresh developer. The speed-value aim for producing negatives for printing with a condenser enlarger will be between 340 and 350. The speed value is not an ISO/ASA speed.

‡ Use 0.09 as your aim for D-min if you process film in KODAK DURAFLO RT Developer Replenisher.
KODAK Plotting Form for Black-and-White Film Processing
(KODAK Publication No. Y-30)

This form is similar to KODAK Publication No. Y-55, KODAK Process Record Form, but it includes areas for plotting only three parameters: contrast index (CI), speed, and D-min. It includes pre-printed aims and action and control limits for these parameters.

Using Form Y-30—Use a separate form for each processor. Record the name of the processor in the blank labeled “Machine.” Record the control-strip batch code in the blank at the top of the form.

1. Measure the densities of the strip in the center of the D-min, TD, LD, HD, and D-max steps with a densitometer in the visual mode. Record the date and time on the form.

2. Calculate the contrast index of your strip by using one of the following formulas or Worksheet 1. The first formula has more steps, but it will give you an answer that is more accurate than the second formula will provide.

**Formula 1**

\[
CI = 0.128 + (0.267 \times D\text{-}min) - (0.969 \times TD) + (0.454 \times LD) + (0.183 \times HD) + (0.039 \times D\text{-}max)
\]

**Formula 2**

\[
CI = \frac{(HD - LD)}{2.26} + 0.10
\]

3. Calculate your variation from aim for contrast index by subtracting 0.58* from the number you determined in step 2.

4. Calculate the speed value of your strip by using the formula given below.

\[
\text{Speed} = 140.9 \times (TD - D\text{-}min) + 335
\]

5. Calculate your variation from aim for speed by subtracting 355† from the number you determined in step 4.

6. Calculate your variation from aim for D-min by subtracting 0.06‡ from the D-min density reading.

7. Plot the differences on Form Y-30. Plot differences that are larger than the corresponding aim values (+ values) above the aim line, and those that are smaller than the aim values (− values) below the line.

**Tolerances and Limits**—Form Y-30 includes the following tolerances and limits for KODAK Black-and-White Film Process Control Strips.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aim</th>
<th>Action Limits—Range Shaded Light Gray on Form Y-30</th>
<th>Control Limits—Range Shaded Dark Gray on Form Y-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI*</td>
<td></td>
<td>+ 0.07 to + 0.20</td>
<td>+ 0.20 or higher</td>
</tr>
<tr>
<td>CI*</td>
<td></td>
<td>− 0.07 to − 0.12</td>
<td>− 0.12 or lower</td>
</tr>
<tr>
<td>Speed</td>
<td>355†</td>
<td>+ 15 to + 22</td>
<td>+ 22 or higher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 9 to − 17</td>
<td>− 17 or lower</td>
</tr>
<tr>
<td>D-min</td>
<td>0.06‡</td>
<td>+ 0.02 to + 0.03</td>
<td>+ 0.03 or higher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No lower limit</td>
<td>No lower limit</td>
</tr>
</tbody>
</table>

The light gray regions of the plotting form begin at the action limit and extend to the control limit for each parameter. The dark gray regions begin at the control limit and extend to the edges of each graph.

* 0.58 is the contrast-index aim for printing negatives with a diffusion enlarger; use 0.43 if you will print negatives with a condenser enlarger.

† 355 is the speed-value aim for a replenished process for producing negatives that you will print with a diffusion enlarger; your speed value may be slightly higher when you use fresh developer. The speed-value aim for producing negatives for printing with a condenser enlarger will be between 340 and 350. The speed value is not an ISO/ASA speed.

‡ Use 0.09 as your aim for D-min if you process film in KODAK DURAFLO RT Developer Replenisher.
## Adjusting Your Process to Aim

After you have monitored your process for a period of time, you may find that your process is not operating close enough to the aims for contrast index and speed. By modifying your development time and/or developer replenishment rate, you can adjust your process to operate at a level closer to aim. The following table lists steps that will help you improve your current process to yield results that are closer to aim.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
</table>
| Variation from aim for contrast index (CI) consistently plots near the action limit **below aim**  | 1. Increase the development time for your control strip in increments of 10 percent until your contrast index is close to aim.  
2. If your variation from aim for speed plots outside the action limit below aim after you increase the development time, increase the replenishment rate by 10 percent.  
**Note:** It may take approximately 1 week before you see a significant change in speed. |
| Variation from aim for contrast index (CI) consistently plots near the action limit **above aim**, and variation from aim for speed consistently plots in the action limit or **below aim** | 1. Decrease the development time for your control strip in increments of 10 percent until your contrast index is close to aim.  
2. If your variation from aim for speed plots outside the action limit below aim after you decrease the development time, increase the replenishment rate by 10 percent.  
**Note:** It may take approximately 1 week before you see a significant change in speed. |
| Variation from aim for contrast index (CI) consistently plots close to aim, and speed value consistently plots near the action limit **below aim** | 1. Increase your replenishment rate by 10 percent.  
**Note:** It may take approximately 1 week before you see a significant change in speed.  
2. If your variation from aim for contrast index (CI) plots outside the action limit above aim after you have adjusted your replenishment rate, decrease the development time for your control strip in increments of 10 percent until your contrast index is close to aim. |
CONTROL CHARTS

A control chart is probably the simplest and most effective tool for achieving process control. Lines indicating aims and action and control limits provide a standard of evaluation. Measurements plotted on the chart show the distribution of data, and quickly identify an abnormal situation. The chart also tracks the influences of other factors that change the process over time. In black-and-white processing, contrast index (CI), speed, and D-min values of control strips are plotted against pre-determined aims.

Follow these steps when you use control charts:
1. Regularly process control strips, and plot the variation from aim for contrast index, speed, and D-min of each strip.
2. Evaluate the results; look at the control chart for changes or trends causing out-of-control situations.
3. Investigate causes of change.
4. Take corrective action to eliminate the cause.
5. Take steps to prevent recurrence.
6. Keep a log that describes any adjustments that you make to the processing conditions.

Evaluating Control-Chart Plots

Plots can indicate two types of variations in a process: random and non-random. Process variations, both random and non-random, influence the distribution of data points on the control charts and identify the state of control.

Random variations are inherent in the process, and they occur even when the process is running at peak performance. Random variations are caused by chance and are normal; they are often called “process noise.” Random variations plot within the limits. They do not form any particular pattern and they are distributed equally above and below the aim line. A process is in control when the only type of variation is random. No corrective action is required. In fact, it is important to avoid over-controlling a process by reacting to random variations.

Non-random variations indicate changes in the process that usually require investigation and correction. These types of plots indicate non-random data:
- Outliers—Data points that plot on or outside the control limits.

Important: Whenever a point plots on or outside the control limit, check that your densitometer is properly calibrated and remeasure the control-strip densities. If the first readings were accurate, process another control strip and measure the densities to confirm that the problem still exists.

- Level shifts—Four to eight consecutive data points that fall on one side of the aim line. When data points are not distributed equally above and below the aim line, something in the process is creating the shift. The more consecutive points that plot above or below the aim line, the higher the probability that a process change occurred that requires investigation. If only two or three points plot on one side of the aim line, those points may be random noise. However, if a fourth point plots on the same side, a shift is likely. A fifth point increases the probability, etc.

Note: To avoid creating a false level shift when you change to a new batch of control strips with a different code number from your current batch, see Changing to a New Batch of Control Strips.

- Trends—Four to eight data points that plot in an ascending or descending row. When data points plot in ascending or descending order, the higher the number of points in the row, the more likely that it indicates a trend.

Seasoning Trends for Fresh Solutions—Some developer and replenisher systems are formulated so that a fresh developer solution will produce a higher speed than a highly seasoned and properly replenished developer. For these systems, a declining trend in speed should be considered “normal” as a fresh developer solution gradually seasons. As the developer becomes fully seasoned, the speed level will stop its downward trend. Systems that exhibit this type of trend include processes using KODAK PROFESSIONAL Developer D-76 and Replenisher D-76R and KODAK PROFESSIONAL T-MAX RS Developer and Replenisher working solution mixed without starter. Systems that do not exhibit a trend of this type include processes using KODAK HC-110 Developer with HC-110 Developer Replenisher, KODAK DURAFLO RT Chemicals, and KODAK PROFESSIONAL T-MAX RS Developer Replenisher working solution mixed with an appropriate starter.
Causes of an Out-of-Control Process
Many factors can lead to an out-of-control process:
• Improper solution mixing
• Improper solution storage and keeping
• Solution contamination
• Incorrect processing temperature
• Incorrect processing time
• Improper agitation
• Improper solution replenishment
• Evaporation
• Equipment malfunction

Be sure to prepare each solution according to the instructions packaged with the chemicals. Be especially careful that you mix all constituents well, and that you use the correct amounts of concentrates and water. For personal protection, wear safety goggles, gloves, and an apron when mixing chemicals. Clean mixing tanks and equipment to avoid dirt buildup and solution contamination. Calibrate mixing tanks for the volumes of solutions you are mixing.

Follow the storage and keeping recommendations given in the instruction packaged with your chemicals. To minimize solution storage and keeping problems, mix only the amount of solution that you will use during the recommended keeping time.

Take precautions to minimize the possibility of solution contamination. Contamination is most often caused by—
• mixing equipment that has not been thoroughly cleaned
• dry chemicals that become airborne during mixing and settle in an adjacent solution
• pipes and tanks made of material that reacts chemically with some solutions
• solution splashed or dripped into another solution

You can reduce contamination by using good housekeeping methods, mixing chemicals in a separate mixing room with air exhausted to the outside of the building, checking that tanks and pipes are made of the proper material, and using correct mixing techniques. Avoid splashing by using care when lifting and transferring processing racks and by avoiding overly vigorous agitation. Use separate mixing tanks for developers and fixers.

Temperature variations greater than ±0.5°F (±0.3°C) in your developer will affect process control and image quality. Temperatures that are too low result in a decrease in processing solution activity. To avoid problems, use a consistent temperature for all your processing solutions. Select a temperature that you can maintain consistently.

Agitation is necessary to maintain uniform solution activity by removing exhausted solution from the emulsion surface and replacing it with fresh solution. Agitation must be uniform throughout the processing tank. Follow your equipment manufacturer’s recommendations for agitation.

Be sure to replenish your solutions properly. Check replenisher pumps and flowmeters regularly to ensure that they are providing the correct amount of replenisher solution.
* If you use KODAK PROFESSIONAL T-MAX RS Developer and Replenisher or KODAK PROFESSIONAL Developer D-76, it is normal for speed plots to "trend down" after you start up with fresh solution.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**

- CI: Trend down
- Speed: Trend down
- D-min: Little or no change

**CHOOSE PROBABLE CAUSE**

- Developer underreplenishment: replenishment not calculated properly.
- Developer underreplenishment: replenisher supply hose pinched.
- Developer underreplenishment: replenisher too dilute (mix error).

**VERIFY CAUSE**

- Check calculation. Keep record of amount of film processed and amount of replenisher used.
- Check hose.
- Closely monitor specific gravity of replenisher mixes. Check mixing records and procedures.

**ELIMINATE CAUSE**

- Recalculate developer replenishment rate.
- Make necessary repairs.
- Dump developer replenisher and mix fresh solution; follow mixing instructions carefully.

**ELIMINATE SYMPTOM**

- Add developer replenisher to developer tank solution until CI and speed plot within action limits.
- Add developer replenisher to developer tank solution until CI and speed plot within action limits.
- Add replenisher concentrate to developer tank solution until CI plots within action limits.

**PREVENT RECURRENCE**

- Routinely check amount of developer replenisher used and amount of film processed. Ensure all developer replenishment rate calculations are done correctly.
- Routinely check amount of developer replenisher used and amount of film processed. Check hose regularly.
- Routinely check amount of developer replenisher used and amount of film processed. Verify accuracy of measurement vessels and mix tanks. Ensure correct mixing procedures.

---

*If you use KODAK PROFESSIONAL T-MAX RS Developer and Replenisher or KODAK PROFESSIONAL Developer D-76, it is normal for speed plots to "trend down" after you start up with fresh solution.*
Depending on the contaminant, you may see a significant increase in D-min. It is normal for speed plots to "trend down" after you start up with fresh solution.

* If you use KODAK PROFESSIONAL T-MAX RS Developer and Replenisher or KODAK PROFESSIONAL Developer D-76, it is normal for speed plots to "trend down" after you start up with fresh solution.

† Depending on the contaminant, you may see a significant increase in D-min.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

<table>
<thead>
<tr>
<th>PLOT PROBLEM</th>
<th>CHOOSE PROBABLE CAUSE</th>
<th>VERIFY CAUSE</th>
<th>ELIMINATE CAUSE</th>
<th>ELIMINATE SYMPTOM</th>
<th>PREVENT RECURRANCE</th>
</tr>
</thead>
</table>
| CI: Trend down  
  Speed: Trend down*  
  D-min: Little or no change | Developer or replenisher too old or oxidized. | Check for low utilization or improper storage of replenisher (e.g., evaporation, high temperature). (Replenisher that is too old may darken to amber brown.) | Replace developer replenisher with fresh solution. | Add fresh replenisher to developer tank solution until CI and speed plot within action limits. | If utilization is low, mix smaller amounts of replenisher and increase replenishment rate. Use floating lids on storage tanks. Avoid high storage temperatures. Date replenisher mixes and assign discard date to mixes. |
| CI: Little or no change  
  Speed: Trend down*  
  D-min: Little or no change | Developer underreplenishment: replenisher tank empty. | Check level of replenisher in replenisher tank. | Refill developer replenisher tank. | Add developer replenisher to developer tank solution until CI and speed plot within action limits. | Routinely check amount of developer replenisher used and amount of film processed. Periodically check level of replenisher in replenisher tank, and refill when necessary. |

* If you use KODAK PROFESSIONAL T-MAX RS Developer and Replenisher or KODAK PROFESSIONAL Developer D-76, it is normal for speed plots to "trend down" after you start up with fresh solution.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**

**PROBABLE CAUSE**

**VERIFY CAUSE**

**ELIMINATE CAUSE**

**ELIMINATE SYMPTOM**

**PREVENT RECURRENTNESS**

---

**PROBLEM:**

- Developer: overreplenishment: faulty metering system.
- Speed: Trend up
- D-min: Little or no change

**CAUSE:**

- Check system.
- Make necessary repairs.
- Process without replenishment until CI calculated properly.
- Routinely check amount of developer replenisher used and amount of film processed. Perform regular maintenance on replenishment system.

**PROBABLE CAUSE:**

- Developer: overreplenishment: film sensor not functioning properly.
- Developer: overreplenishment: replenishment rate not calculated properly.
- Developer: overreplenishment: record of amount of film processed and amount of replenisher used.

**VERIFY CAUSE:**

- Check sensor.
- Check calculation. Keep record of amount of film processed and amount of replenisher used.

**ELIMINATE CAUSE:**

- Adjust sensor to replenish developer tank at proper interval.
- Recalculate developer replenishment rate.

**PREVENT RECURRENTNESS**

- Routinely check amount of developer replenisher used and amount of film processed. Check sensors regularly.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**

**CHOOSE PROBABLE CAUSE**

CI: Trend up
Speed: Trend up
D-min: Little or no change

Developer overreplenishment: replenisher too concentrated (mix error).

**VERIFY CAUSE**

Check specific gravity of replenisher to detect gross mixing errors. Check mixing records and procedures.

Developer overreplenishment: increase in amount of film processed (i.e., for labs with replenishment rates adjusted for low utilization).

Check amount of developer replenisher used and amount of film processed.

**ELIMINATE CAUSE**

Dump developer replenisher and mix fresh solution; follow mixing instructions carefully.

Adjust developer replenishment rate.

**ELIMINATE SYMPTOM**

Add water to developer tank solution until CI and speed plot within action limits.

Process without replenishment until CI and speed plot within action limits.

**PREVENT RECURRENCE**

Routinely check amount of developer replenisher used and amount of film processed. Verify accuracy of measurement vessels and mix tanks. Ensure correct mixing procedures.

Routinely check amount of developer replenisher used and amount of film processed.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**SYMPTOM**
- Low temperature: faulty temperature control.
- Low temperature: thermometer inaccurate.
- Low temperature: heat exchanger setting for heat exchanger.

**CAUSE**
- Check temperature-control system, recheck temperature with accurate thermometer.
- Compare reading to reading of accurate thermometer.
- Check temperature-setting for heat exchanger.

**PROBABLE CAUSE**
- CI: Level shift low
- CI: Outlier low (process another strip to confirm)
- Speed: Level shift low
- Speed: Outlier low (process another strip to confirm)
- D-min: Little or no change
- D-min: Little or no change

**CHEOOSE**
- Low temperature: faulty temperature control.
- Low temperature: thermometer inaccurate.
- Low temperature: heat exchanger setting for heat exchanger.

**VERIFY**
- Check tank temperature before processing film.
- Replace thermometer and recheck temperature.
- Check tank temperature before processing film.

**ELIMINATE**
- Make necessary repairs or adjustments.
- Replace thermometer and recheck temperature.
- Check tank temperature before processing film.

**PREVENT**
- Routinely inspect and perform maintenance on temperature-control system.
- Regularly check thermometer accuracy.
- Ensure that heat exchanger is set to correct temperature.

**ELIMINATE RECURRANCE**
- Routinely inspect and perform maintenance on temperature-control system.
- Regularly check thermometer accuracy.
- Ensure that heat exchanger is set to correct temperature.
**PROBLEM**
- PLOT
- CHOOSE PROBABLE CAUSE
  - CI: Level shift low
  - Speed: Level shift low
  - D-min: Little or no change
- ER: Outlier low (process another strip to confirm)
  - Speed: Outlier low (process another strip to confirm)
  - D-min: Little or no change
- ROLLER-TRANSPORT OR CINE PROCESSOR
  - Development time too short: machine drive or transport not functioning properly.

**CAUSE**
- Check film transport for mechanical problems. Measure time of development. Check for fluctuations in voltage to processor.
- Development time too short: machine adjusted for pull processing.
- Check time setting.
- Check developer tank and recirculation system for leaks. Check that drain valves are closed and not leaking.

**ELIMINATE CAUSE**
- Make repairs as necessary.
- Adjust machine for normal processing.
- Make repairs as necessary.
- Add working tank solution to developer tank until solution is at normal level.

**ELIMINATE SYMPTOM**
- Inspect drive system regularly.
- Install voltage regulator or check voltage regularly.
- Check adjustment of machine before processing film.
- Regularly inspect and maintain processor. Check solution levels before processing film.

**PREVENT RECURRENCE**
**Monitoring and Troubleshooting KODAK Black-and-White Film Processes**

**PLOT PROBLEM**

- Symptom: Little or no change in D-min
- Speed: Level shift low
- CI: Outlier low (process another strip to confirm)

**CHOOSE PROBABLE CAUSE**

- Decreased developer agitation (especially common in dip-and-dunk processors).
- Outlier low (process another strip to confirm)

**VERIFY CAUSE**

- Check agitation system for problems (e.g., clogged turbulator or sparger, debris in bottom of tank, dirty solution filters, etc.). Check that nitrogen-burst system is functioning and that pressure is correct.
- Check uniformity by processing several control strips together. Position strips to run through different sections of tank. Check for non-uniform areas on sheet film.

**ELIMINATE CAUSE**

- Make necessary adjustments to agitation system.

**ELIMINATE SYMPTOM**

- Routinely inspect and perform maintenance on agitation system.

**PREVENT RECURRENCE**
**Monitoring and Troubleshooting KODAK Black-and-White Film Processes**

**PLOT PROBLEM**

- **CI:** Level shift low
  - Speed: Level shift low
  - D-min: Little or no change

- **CI:** Outlier low (process another strip to confirm)
  - Speed: Outlier low (process another strip to confirm)
  - D-min: Little or no change

**CHOOSE PROBABLE CAUSE**

- Developer contaminated with fixer.
- Developer contaminated with stop bath.

**VERIFY CAUSE**

- Check developer and fixer levels. Developer may have strong ammonia odor. Check for proper connection of replenishment lines. Check for splashing of fixer into developer.

**ELIMINATE CAUSE**

- Use care when mixing and using chemicals.

**ELIMINATE SYMPTOM**

- Flush developer tank thoroughly. Refill tank with fresh developer solution.

**PREVENT RECURRENCE**

- Follow standard housekeeping procedures to avoid contamination. Ensure that machine is properly leveled. Avoid improperly connecting replenishment lines.

*Note: Further details on troubleshooting steps are omitted for brevity.*
**Monitoring and Troubleshooting KODAK Black-and-White Film Processes**

**Choose Probable Cause**

- **CI:** Level shift low
  - Speed: Level shift low
  - D-min: Little or no change

- **CI:** Outlier low (process another strip to confirm)
  - Speed: Outlier low (process another strip to confirm)
  - D-min: Little or no change

**Verify Cause**

- **For All Developers**
  - Mix error in fresh working tank solution: developer too dilute or too much starter added (in systems that use DURAFLO RT Developer Replenisher).
  - Mix error in fresh working tank solution: developer not diluted or too much Part B used.

- **Developer too dilute.**
  - Check for leaks in water jacketed developer tanks or cooling coils. Check for excessive water additions to maintain solution level.

- **Fresh working tank developer contaminated.**
  - Check mixing area for possible source of contamination.

**Eliminate Cause**

- Follow mixing instructions carefully.

- Make repairs and adjustments as necessary.

- Use care when mixing and using chemicals.

**Eliminate Symptom**

- Refill tank with fresh developer solution.

- Add developer replenisher to developer tank solution until CI and speed plot within action limits, or replace developer tank solution.

- Flush developer tank thoroughly. Refill tank with fresh developer solution.

**Prevent Recurrence**

- Verify accuracy of measurement vessels and mix tanks. Ensure correct mixing procedures.

- Routinely check equipment and perform regular maintenance. Record amount of water used to “top off” tanks.

- Always thoroughly clean mixing area and all mixing equipment immediately after use.

---

**About the Process**

- **CI:** CI (Contrast Index) level shift low indicates a potential issue with the developer solution.
- **Speed:** Speed level shift low suggests a problem with the processing speed.
- **D-min:** Little or no change in D-value indicates a possible contamination or dilution issue.

- **Outlier low:** An outlier low signal from the process indicates a deviation from normal conditions.

- **Mixing Instructions Followed:** Ensure that mixing procedures are followed correctly as per the instructions.

- **Mixing Records and Developer Tank Solution:** Check mixing records and the developer tank solution to confirm accuracy.

- **Specific Gravity:** Verify the accuracy of specific gravity readings.

- **Leakage Check:** Routinely check for leaks in water-jacketed developer tanks and cooling coils.

- **Water Additions:** Maintain solution levels carefully, adding water as necessary to prevent dilution or concentration issues.

- **Developer Replenisher:** Use DURAFLO RT Developer Replenisher as necessary to adjust concentrations.

- **Refill Tank:** Refill the developer tank with fresh developer solution to restore proper levels.

- **Maintenance:** Perform regular maintenance to ensure equipment is functioning optimally.

- **Recording Usage:** Record the amount of water used to maintain consistent processing conditions.

---

**F002_9105EC**
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**

- CI: Level shift low
  - Speed: Level shift low
  - D-min: Little or no change

- CI: Outlier low (process another strip to confirm)
  - Speed: Outlier low (process another strip to confirm)
  - D-min: Little or no change

**CHOOSE PROBABLE CAUSE**

- Decreased circulation in developer tank.
- Developer oxidation or aeration.

**VERIFY CAUSE**

- Check recirculation system for proper flow rate. Check for plugged filters or malfunctioning pump.
- Check tank uniformity by processing several control strips together. Position strips to run through different sections of tank. Check for non-uniform areas on sheet film.

**ELIMINATE CAUSE**

- Make necessary adjustments to recirculation system.
- Repair hose clamps, tubing, and pump as necessary. Use floating lids when machine is not in use.

**ELIMINATE SYMPTOM**

- Replace developer with fresh solution.

**PREVENT RECURRANCE**

- Check recirculation system frequently for proper operation.
- Follow recommendations for changing filters. Routinely examine system components.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**
- Cl: Level shift low
- Speed: Level shift low
- D-min: Little or no change

**CHOOSE PROBABLE CAUSE**
- Fresh working tank developer made from replenisher that is too old.

**VERIFY CAUSE**
- Check age of developer replenisher used. Check for high-temperature storage. (Replenisher that is too old may darken to amber brown.)

**ELIMINATE CAUSE**
- Replace developer replenisher with fresh solution.

**ELIMINATE SYMPTOM**
- Replace fresh working tank developer with solution made from fresh replenisher.

**PREVENT RECURRENCE**
- If utilization is low, mix smaller amounts of replenisher. Date replenisher mixes and assign discard dates to mixes.

**SYMPTOM**
- Little or no change

**PROBLEM**
- Outlier low (process another strip to confirm)
- Speed: Outlier low (process another strip to confirm)
- D-min: Little or no change

**CAUSE**
- PROBABLE CAUSE
- ELIMINATE CAUSE
- PREVENT RECURRENCE

**CITATIONS**

**ELIMINATE**
- Developer made from fresh working tank
- Replenisher used.

**PLOT**
- PROBLEM
- CHOOSE
- VERIFY
- ELIMINATE
- PREVENT

**CAUSE**
- Little or no change
- Outlier low (process another strip to confirm)
- Speed: Outlier low (process another strip to confirm)
- D-min: Little or no change

**PROBLEM**
- Outlier low (process another strip to confirm)
- Speed: Outlier low (process another strip to confirm)
- D-min: Little or no change

**CAUSE**
- PROBABLE
- ELIMINATE
- PREVENT
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**

**PREVENT RECURRENCE**
- Routinely inspect and perform maintenance on temperature-control system.

**CHOOSE PROBABLE CAUSE**
- CI: Level shift high
  - Speed: Level shift high
  - D-min: Little or no change
- CI: Outlier high (process another strip to confirm)
  - Speed: Outlier high (process another strip to confirm)
  - D-min: Little or no change

**VERIFY CAUSE**
- High temperature: faulty temperature control.
- High temperature: thermometer inaccurate.
- High temperature: heat exchanger setting set to incorrect temperature.

**VERIFY CAUSE**
- Compare reading to reading of accurate thermometer.
- Replace thermometer and recheck temperature.
- Make necessary repairs or adjustments.

**ELIMINATE CAUSE**
- Check temperature setting of heat exchanger.
- Check tank temperature before processing film.
- Check tank temperature before processing film.

**ELIMINATE SYMPTOM**
- Check temperature−control system. Recheck temperature with accurate thermometer.
- Replace thermometer and recheck temperature.
- Make necessary repairs or adjustments.

**PREVENT RECURRENCE**
- Regularly check thermometer accuracy.
- Ensure that heat exchanger is set to correct temperature.
- Check tank temperature before processing film.
- Make necessary repairs or adjustments.
- Replace thermometer and recheck temperature.
- Check temperature−control system. Recheck temperature with accurate thermometer.
**PLOT PROBLEM**

- Cl: Level shift high
- Speed: Level shift high
- D-min: Little or no change

- Cl: Outlier high (process another strip to confirm)
- Speed: Outlier high (process another strip to confirm)
- D-min: Little or no change

**CHOOSE PROBABLE CAUSE**

- Development time too long: machine drive or transport not functioning properly.
- Development time too long: machine adjusted for push processing.
- Developer replenisher leaking into developer tank.

**VERIFY CAUSE**

- Check film transport for mechanical problems. Measure time of development. Check for fluctuations in voltage to processor.
- Check time setting.
- Check developer replenisher level. Inspect developer replenishment system.

**ELIMINATE CAUSE**

- Make repairs as necessary.
- Adjust machine for normal processing.
- Make repairs as necessary.

**ELIMINATE SYMPTOM**

- Process without replenishment (or add starter if you use DURAFLO RT Developer Replenisher) until Cl and speed plot within action limits.

**PREVENT RECURRANCE**

- Inspect drive system regularly.
- Install voltage regulator or check voltage regularly.
- Check adjustment of machine before processing film.
- Install check valve. Inspect replenishment system regularly.

**CI:**

- Level shift high
- Little or no change

**PLOT PROBLEM**

- CI: Level shift high
- Speed: Level shift high
- D-min: Little or no change

- Cl: Outlier high (process another strip to confirm)
- Speed: Outlier high (process another strip to confirm)
- D-min: Little or no change

**CHOOSE PROBABLE CAUSE**

- Development time too long: machine drive or transport not functioning properly.
- Development time too long: machine adjusted for push processing.
- Developer replenisher leaking into developer tank.

**VERIFY CAUSE**

- Check film transport for mechanical problems. Measure time of development. Check for fluctuations in voltage to processor.
- Check time setting.
- Check developer replenisher level. Inspect developer replenishment system.

**ELIMINATE CAUSE**

- Make repairs as necessary.
- Adjust machine for normal processing.
- Make repairs as necessary.

**ELIMINATE SYMPTOM**

- Process without replenishment (or add starter if you use DURAFLO RT Developer Replenisher) until Cl and speed plot within action limits.

**PREVENT RECURRANCE**

- Inspect drive system regularly.
- Install voltage regulator or check voltage regularly.
- Check adjustment of machine before processing film.
- Install check valve. Inspect replenishment system regularly.
CI: Level shift high
Speed: Level shift high
D-min: Little or no change

CI: Outlier high (process another strip to confirm)
Speed: Outlier high (process another strip to confirm)
D-min: Little or no change

Mix error in fresh working tank solution: developer too concentrated. Not enough starter used with DURAFLO RT Developer Replenisher.

Check mixing records and procedures.
Follow mixing instructions carefully.
Add water (or starter if you use DURAFLO RT Developer Replenisher, depending on mix error) to developer tank solution.
Verify accuracy of measurement vessels and mix tanks. Ensure correct mixing procedures.

Increased developer agitation or recirculation.
Check agitation and recirculation systems for equipment malfunction.
Make repairs and adjustments as necessary.
Perform regular maintenance on agitation and recirculation systems. Maintain nitrogen pressure level.
The acceptable range for the pH of stop bath is 4.0 to 5.0. A fresh solution may have a pH of 3.0.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**
- CI: Level shift low
  - Speed: Level shift high
  - D-min: Level shift high
- CI: Outlier low (process another strip to confirm)
  - Speed: Outlier high (process another strip to confirm)
  - D-min: Outlier high (process another strip to confirm)

**CHOOSE PROBABLE CAUSE**
- Fogged control strips.
- Developer contaminated.

**VERIFY CAUSE**
- Process control strip from new package.
- Check mixing area and equipment for source of contamination.

**ELIMINATE CAUSE**
- Discard fogged control strips.
- Flush developer tank thoroughly. Replace developer and replenisher with fresh solution.

**ELIMINATE SYMPTOM**
- Handle and process control strips in total darkness.
- Always thoroughly clean mixing area and all mixing equipment immediately after each use.

**PREVENT RECURRENCE**
- Store daily supply of strips in lighttight container. (Return package of strips to cold storage after you remove daily supply.)

---

Note: The diagram provides a flowchart for troubleshooting KODAK Black-and-White Film Processes, detailing steps to identify and resolve issues such as fogged control strips, developer contamination, and mixing area contamination. Each step includes actions to verify, eliminate, and prevent recurrence of problems.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

Choose Probable Cause

PROBLEM

Fogged control strips.

Decayed film in fixer tank.

Decreased fixer agitation (especially common in dip-and-dunk processors).

Fixer contaminated.

Verify Cause

Process control strip from new package.

Check agitation system for problems (e.g., clogged turbulator or sparger, debris in bottom of tank, dirty solution filters, etc.). Check that air burst system is functioning and that air pressure is correct.

Check solution levels. Check for splashing of other solutions into fixer.

Eliminate Cause

Discard fogged control strips.

Make necessary adjustments to agitation system.

Use care when mixing and using chemicals.

Flush fixer tank thoroughly. Refill tank with fresh fixer solution.

Eliminate Symptom

Handle and process control strips in total darkness.

Regularly inspect and perform maintenance on agitation system.

Follow standard housekeeping procedures to avoid contamination. Avoid cross-connecting replenishment lines.

Prevent Recurrence

Store daily supply of strips in light-tight container. (Return package of strips to cold storage after you remove daily supply.)

CAUSE

ELIMINATE

SYMPTOM

PREVENT

RECURRENCE

PROBLEM

Fogged control strips.

Decayed film in fixer tank.

Decreased fixer agitation (especially common in dip-and-dunk processors).

Fixer contaminated.

PROBABLE CAUSE

CI:

Little or no change

Speed:

Little or no change

D-min:

Level shift high

CI:

Little or no change

Speed:

Little or no change

D-min:

Outlier high (process another strip to confirm)

CI:

Little or no change

Speed:

Little or no change

D-min:

Outlier high (process another strip to confirm)
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

PLOT PROBLEM

CI: Little or no change
Speed: Little or no change
D-min: Little or no change

CHOOSE PROBABLE CAUSE

Fresh working tank fixer made from replenisher that is too old.

VERIFY CAUSE

Check age of fixer replenisher used.
Check for fixer sulfurization (yellowish-white precipitate).
Check for high storage temperatures.

ELIMINATE CAUSE

Flush fixer replenisher tank thoroughly. Replace fixer replenisher with fresh solution.

ELIMINATE SYMPTOM

Replace fixer tank solution with solution made from fresh replenisher.

PREVENT RECURRENCE

If utilization is low, mix smaller amounts of replenisher. Date replenisher mixes and assign discard dates to mixes.

Fresh working tank fixer made from replenisher that is too old.
If D-min goes down after refixing, proceed with corrective action indicated; if D-min stays the same, check control strips for fog.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PROBLEM PLOT**

**PROBABLE CAUSE**

- Fixer underreplenishment: film sensor not functioning properly.
- Fixer underreplenishment: replenishment rate not calculated properly.
- Fixer underreplenishment: replenisher supply hose pinched.
- Fixer replenisher contaminated.

**VERIFY CAUSE**

- Check sensor. Refix strip in fresh fixer.*
- Check calculation. Keep record of amount of film processed and amount of replenisher used. Refix strip in fresh fixer.*
- Check hose. Refix strip in fresh fixer.*
- Check mixing area and equipment for source of contamination.

**ELIMINATE CAUSE**

- Repair sensor.
- Recalculate fixer replenishment rate.
- Make necessary repairs.
- Use care when mixing and using chemicals.

**ELIMINATE SYMPTOM**

- Add fixer replenisher to fixer tank solution until D-min plots within action limits.
- Add fixer replenisher to fixer tank solution until D-min plots within action limits.
- Add fixer replenisher to fixer tank solution until D-min plots within action limits.
- Flush fixer and fixer replenisher tanks thoroughly. Replace fixer and fixer replenisher with fresh solutions.

**PREVENT RECURRENCE**

- Routinely check amount of fixer replenisher used and amount of film processed. Check sensors regularly.
- Routinely check amount of fixer replenisher used and amount of film processed. Ensure all fixer replenishment rate calculations are done correctly.
- Routinely check amount of fixer replenisher used and amount of film processed. Check hose regularly.
- Always thoroughly clean mixing area and all mixing equipment immediately after use. Follow standard housekeeping procedures to avoid contamination.

---

* If D-min goes down after refixing, proceed with corrective action indicated; if D-min stays the same, check control strips for fog.
Monitoring and Troubleshooting KODAK Black-and-White Film Processes

**PLOT PROBLEM**

**CHOOSE PROBABLE CAUSE**

Fixer underreplenishment: replenisher too dilute (mix error).

**VERIFY CAUSE**

Check specific gravity of fixer tank solution and replenisher. Check mixing record and procedures. Refix strip in fresh fixer. *If D-min goes down after refixing, proceed with corrective action indicated; if D-min stays the same, check control strips for fog.*

**ELIMINATE CAUSE**

Replace fixer replenisher with fresh solution. Follow mixing instructions carefully.

**ELIMINATE SYMPTOM**

Add concentrate to fixer tank solution until specific gravity is correct.

**PREVENT RECURRENCE**

Routinely check amount of fixer replenisher used and amount of film processed. Verify accuracy of measurement vessels and mix tanks. Ensure correct mixing procedures. Monitor specific gravity of fixer tank solution.

Fixer too dilute.

Check for leaks in water-jacketed fixer tanks or cooling coils. Check for excessive water additions to maintain solution level.

**VERIFY CAUSE**

Make repairs and adjustments as necessary.

**ELIMINATE SYMPTOM**

Add fixer replenisher to fixer tank solution until CI and speed plot within action limits.

**PREVENT RECURRENCE**

Routinely check and perform regular maintenance on equipment. Record amount of water used to top off tanks.

**ROLLERS-TRANSFORM OR CINE PROCESSORS**

Short fixing time: loss of fixer volume due to leak.

**VERIFY CAUSE**

Check fixer tank and recirculation system for leaks. Check that drain valves are closed and do not leak.

**ELIMINATE CAUSE**

Make repairs and adjustments as necessary.

**ELIMINATE SYMPTOM**

Add working tank solution to fixer tank until solution is at normal level.

**PREVENT RECURRENCE**

Regularly inspect and maintain recirculation system. Check solution levels before processing film.

**SYMPTOM**

CI: Little or no change
Speed: Little or no change
D-min Trend up

**VERIFY CAUSE**

Check specific gravity of fixer tank solution and replenisher. Check mixing record and procedures. Refix strip in fresh fixer. *If D-min goes down after refixing, proceed with corrective action indicated; if D-min stays the same, check control strips for fog.*

**ELIMINATE CAUSE**

Replace fixer replenisher with fresh solution. Follow mixing instructions carefully.

**ELIMINATE SYMPTOM**

Add concentrate to fixer tank solution until specific gravity is correct.

**PREVENT RECURRENCE**

Routinely check amount of fixer replenisher used and amount of film processed. Verify accuracy of measurement vessels and mix tanks. Ensure correct mixing procedures. Monitor specific gravity of fixer tank solution.

Fixer too dilute.

Check for leaks in water-jacketed fixer tanks or cooling coils. Check for excessive water additions to maintain solution level.

**VERIFY CAUSE**

Make repairs and adjustments as necessary.

**ELIMINATE SYMPTOM**

Add fixer replenisher to fixer tank solution until CI and speed plot within action limits.

**PREVENT RECURRENCE**

Routinely check and perform regular maintenance on equipment. Record amount of water used to top off tanks.

**ROLLERS-TRANSFORM OR CINE PROCESSORS**

Short fixing time: loss of fixer volume due to leak.

**VERIFY CAUSE**

Check fixer tank and recirculation system for leaks. Check that drain valves are closed and do not leak.

**ELIMINATE CAUSE**

Make repairs and adjustments as necessary.

**ELIMINATE SYMPTOM**

Add working tank solution to fixer tank until solution is at normal level.

**PREVENT RECURRENCE**

Regularly inspect and maintain recirculation system. Check solution levels before processing film.
**PLOT PROBLEM**
- CI: Little or no change
- Speed: Little or no change
- D-min: Trend up

**CHOOSE PROBABLE CAUSE**
- Fixer replenisher too old.
- Fixer underreplenishment: replenisher tank empty.

**VERIFY CAUSE**
- Check for low utilization or poor storage of fixer replenisher (i.e., high temperature, no floating lids).
- Check level of fixer replenisher in replenisher tank.

**ELIMINATE CAUSE**
- Replace fixer replenisher with fresh solution.
- Refill fixer replenisher tank.

**ELIMINATE SYMPTOM**
- Add fresh fixer replenisher to fixer tank solution until D-min plots within action limits.
- Add fixer replenisher to fixer tank solution until D-min plots within action limits.

**PREVENT RECURRENT**
- If utilization is low, mix smaller amounts of replenisher. Date replenisher mixes and assign discard dates to mixes.
- Routinely check amount of fixer replenisher used and amount of film processed. Periodically check solution level in replenisher tank and refill when necessary.
Troubleshooting from the Appearance of Processed Film

The following table will help you use the appearance of processed film to diagnose process problems. Whenever you take corrective action, process another control strip to confirm that the change has returned the process to control before you resume normal processing.

<table>
<thead>
<tr>
<th>Problem with Film Appearance</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milkiness (most apparent in low-density areas)—pale, white translucence</td>
<td>Retained silver halide due to inadequate fixing</td>
<td>Check fixer dilution, time, and temperature.</td>
</tr>
<tr>
<td>Graininess or mottle—white, grainy particles</td>
<td>Sulfurized fixer</td>
<td>Check fixer for sources of oxidation (e.g., excessive aeration or agitation). Replace fixer.</td>
</tr>
<tr>
<td>Surface dirt</td>
<td>Dirt in solutions or water</td>
<td>Filter solutions and change filters regularly. Dump and clean wash and PHOTO-FLO Solution tanks regularly. Clean processor and dryer regularly. Follow good housekeeping habits.</td>
</tr>
<tr>
<td>Scum—very fine dissolved material that dries and makes surface cloudy</td>
<td>Dirty PHOTOFLO Solution Dirt in solutions or water Dirt particles from air, dirty work area, or processing/drying equipment Sulfurized fixer</td>
<td>Dump and replace solution routinely. Change filters in dryer routinely. Use floating covers on processor and replenisher tanks. Change filters in recirculating system weekly. Replace fixer.</td>
</tr>
<tr>
<td>Severe magenta (pink) stain</td>
<td>Retained sensitizing dye due to inadequate fixing and/or washing</td>
<td>Check fixer dilution, time, and temperature. Check wash time and flow rate. Check for fixer exhaustion or underreplenishment.</td>
</tr>
<tr>
<td>Streaks of non-uniform density</td>
<td>Excessive or uneven developer agitation</td>
<td>Check and adjust agitation if needed. With gaseous-burst agitation, check that initial burst is adequate and uniformly distributed throughout tank.</td>
</tr>
<tr>
<td>Mottle—areas of non-uniform density</td>
<td>Inadequate developer agitation</td>
<td>Check and adjust agitation if needed. With gaseous-burst agitation, check that initial burst is adequate and uniformly distributed throughout tank.</td>
</tr>
<tr>
<td>Chemical splash marks—irregular or random density differences</td>
<td>Excessively high Solution level Excessive agitation</td>
<td>Check and correct solution levels; wash level should be higher than that of other solutions. Check and correct agitation.</td>
</tr>
<tr>
<td>Problem with Film Appearance</td>
<td>Possible Cause</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td><strong>Scratches and/or abrasions</strong>— marks on emulsion or base side</td>
<td>Dirt or chemical buildup on rollers, squeegees, or racks of continuous or roller-transport processors</td>
<td>Check and clean these parts routinely. Follow good housekeeping habits.</td>
</tr>
<tr>
<td></td>
<td>Stuck, misaligned, or dirty rollers</td>
<td>Check alignment with test film or leader. Replace worn bearings or rollers.</td>
</tr>
<tr>
<td></td>
<td>Processor mechanical problems</td>
<td>Check processor for mechanical problems. Follow routine maintenance schedule.</td>
</tr>
<tr>
<td></td>
<td>Cinch marks due to excessive tension, improper handling or loading</td>
<td>Check processor for mechanical problems. Train operators in correct handling methods.</td>
</tr>
<tr>
<td></td>
<td>Dirt in camera</td>
<td>Notify customer.</td>
</tr>
<tr>
<td><strong>Water marks</strong>— marks caused by excess water that causes differential drying</td>
<td>Water collecting in perforations</td>
<td>Check that PHOTO-FLO Solution is diluted correctly.</td>
</tr>
<tr>
<td></td>
<td>Water rundown from clips (rack-and-tank processors)</td>
<td>Check that wash and PHOTO-FLO Solution levels do not cover clips.</td>
</tr>
<tr>
<td></td>
<td>Water splashed on film</td>
<td>Check and eliminate source of splashing.</td>
</tr>
<tr>
<td></td>
<td>Inadequate drying</td>
<td>Check that drying temperature is adequate.</td>
</tr>
<tr>
<td></td>
<td>Film drying too quickly</td>
<td>Reduce drying temperature.</td>
</tr>
<tr>
<td><strong>Skivings</strong>— thin pieces of emulsion</td>
<td>Rollers not aligned (roller-transport or continuous processors)</td>
<td>Adjust equipment.</td>
</tr>
<tr>
<td><strong>Pressure marks</strong>— plus-density areas (e.g., half-moons, crescents, etc.)</td>
<td>Poor film handling</td>
<td>Train operators in correct handling methods.</td>
</tr>
<tr>
<td></td>
<td>Excessive tension (continuous processors)</td>
<td>Check processor for mechanical problems.</td>
</tr>
<tr>
<td></td>
<td>Camera malfunction</td>
<td>Notify customer.</td>
</tr>
<tr>
<td><strong>Static marks</strong>— branch-like marks, circular spots with dark centers, row of spots (often surrounded by fogged areas)</td>
<td>Static electricity discharges before development</td>
<td>Maintain moderate levels of humidity and temperature in splicing and processing areas. Handle film carefully. Separate rolls and sheets slowly and carefully.</td>
</tr>
<tr>
<td>Problem with Film Appearance</td>
<td>Possible Cause</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| **Light fog**—plus density (especially noticeable in low-density areas) | Incorrect use of safelight  
Inspection during development  
Light leaks in darkroom or processor; luminescent tape, timers, indicators; fluorescent lamp afterglow  
Improper film loading or handling by customer; camera malfunction | Check safelight and follow recommendations.  
*Do not develop by inspection.*  
Find and eliminate light leaks and light sources.  
Notify customer. |
| **Dark film**—abnormally high density | Overdevelopment or extreme overexposure  
Light fog | Check developer time, temperature, mixing; check camera exposure.  
See “Light fog.” |
| **Light film**—abnormally low density | Underdevelopment or extreme underexposure  
Liquid concentrate developer overconcentrated or underconcentrated  
Developer contaminated with fixer or stop bath | Check developer time, temperature, mixing; check camera exposure.  
Mix developer in proper ratio of concentrate to water.  
Replace contaminated developer.  
Wash mixing equipment thoroughly before use. |
| **Surface spots that appear dark by transmitted light** | Dirt from PHOTO-FLO Solution  
Water spotting  
Dirt from dryer  
Sulfurized fixer | Replace PHOTO-FLO Solution.  
Check dilution of PHOTO-FLO Solution.  
Check cleanliness and dryer filters.  
Replace fixer. |
MORE INFORMATION ON USING CONTROL STRIPS

Note: If you convert a processor from one black-and-white film developer and replenisher to another, follow the procedure for using control strips described under Starting Up Your Process.

Changing to a New Batch of Control Strips
When you change from your current batch of control strips to strips with a different code number, make a crossover to confirm that both code numbers provide the same information. Be sure that your process is stable and in control before you begin using a new batch of control strips.

1. While you still have a week’s supply of control strips of the current code, process one control strip from the new batch of strips with one strip from the current batch in three separate runs.
2. Read and record the densities of the processed strips.
3. Calculate the contrast index and speed of each of the six strips (use Formula 1 or 2 under Starting Up Your Process or Worksheet 1).
4. Average the contrast index, speed, and D-min of the three strips from the new batch. Average the contrast index, speed, and D-min of the three strips from the current batch.
5. To determine the differences between the two batches of strips, subtract the average values for contrast index, speed, and D-min of your current strips from the average values for contrast index, speed, and D-min of the new strips.
6. Apply the differences between the two batches of strips to your current aims for contrast index, speed, and D-min, and write the values on Form Y-30. Indicate the code number of the new batch of strips on your control chart.

Determining Starting-Point Development Times for Different KODAK Black-and-White Films
To determine starting-point development times for Kodak black-and-white films you haven’t processed before, follow the procedure below. The values in the table correlate the contrast-index value of control strips with the development level required for a variety of Kodak films.

Note: You can also use the values in the table to confirm that your existing development times for black-and-white films are producing an optimum development level. See Confirming Existing Development Times.

1. Process a control strip at the times given below.* Record the development time on each strip.
   - For dip-and-dunk processes—4 minutes, 6 minutes, 8 minutes, 10 minutes, and 12 minutes
   - For roller-transport processors using KODAK DURAFLO RT Developer Replenisher—60 seconds, 90 seconds, 120 seconds, and 240 seconds
2. Measure the densities of the strip in the center of the D-min, TD, LD, HD, and D-max steps with a densitometer in the visual mode.
3. Calculate the contrast index of each of the strips; use Formula 1 or 2 under Starting Up Your Process or Worksheet 1.
4. Refer to the table of contrast-index values. Find your developer, film type, and type of processing you will do (i.e., normal or push 2). The value in the table is the contrast index that you need to obtain with your control strip.
   - Compare the contrast-index values of the control strips that you processed in step 1 with the value in the table.

* If you performed a development-time series to determine an optimum development time for control strips, you can use those control strips instead of processing additional strips; proceed to step 4.
Select the control strip that has the contrast-index value that is closest to the value in the table.

- If the contrast-index value is within ±0.02 of the value in the table, use the time for the strip you selected to process your film.
- If the contrast-index value is more than 0.02 below the value in the table, process control strips at development times that are 5 percent, 10 percent, and 20 percent longer than that of the strip you selected. Then, repeat steps 2 through 4.
- If the contrast-index value is more than 0.02 above the value in the table, process control strips at development times that are 5 percent, 10 percent, and 20 percent shorter than that of the strip you selected. Then, repeat steps 2 through 4.

### Confirming Existing Development Times

To confirm that your existing development times for specific black-and-white films are providing an optimum development level, follow the procedure below:

1. Process a control strip at the development time that you currently use for a particular film and type of processing (i.e., normal or push 2).
2. Measure the densities of the strip in the center of the D-min, TD, LD, HD, and D-max steps with a densitometer in the visual mode.
3. Calculate the contrast index of the strip; use Formula 1 or 2 under Starting Up Your Process or Worksheet 1.
4. Refer to the table at the right. Find your developer, film type, and type of processing. Compare the contrast-index value that you calculated in step 3 with the value and the range in the table.

     - If the contrast-index value is within the range in the table, record the contrast-index value and continue using your current development time for this film. Routinely process a control strip with customer film to confirm process consistency; you may find that the contrast index changes slightly as your process seasons.
     - If the contrast-index value is not within the range in the table, we strongly recommend additional testing to determine if you will produce negatives of higher quality by changing your development time to obtain a control-strip contrast index that is within the range in the table.

![Important]

The contrast-index values in the table are starting-point recommendations. Fine-tune your process as required to maximize the quality of your negatives.

The contrast-index values in the table are for printing with a diffusion enlarger. If you print with a condenser enlarger, subtract 0.15 from the values in the table.

### KODAK Developer or Replenisher

<table>
<thead>
<tr>
<th>KODAK Professional Developer and Replenisher</th>
<th>Contrast Index of Control Strip</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRI-X 400</td>
<td>0.61 ± 0.06, 0.76 ± 0.08</td>
</tr>
<tr>
<td>PLUS-X 125</td>
<td>0.55 ± 0.08, 0.79 ± 0.11</td>
</tr>
<tr>
<td>T-MAX 100</td>
<td>0.71 ± 0.04, 0.92 ± 0.06</td>
</tr>
<tr>
<td>T-MAX 400</td>
<td>0.58 ± 0.03, 0.72 ± 0.03</td>
</tr>
<tr>
<td>T-MAX P3200 (EI 1600)</td>
<td>0.86 ± 0.06, 0.97 ± 0.07</td>
</tr>
<tr>
<td>T-MAX P3200 (EI 3200)</td>
<td></td>
</tr>
<tr>
<td>D-76</td>
<td></td>
</tr>
<tr>
<td>TRI-X 400</td>
<td>0.59 ± 0.03, 0.76 ± 0.05</td>
</tr>
<tr>
<td>PLUS-X 125</td>
<td>0.49 ± 0.04, 0.67 ± 0.05</td>
</tr>
<tr>
<td>T-MAX 100</td>
<td>0.62 ± 0.03, 0.84 ± 0.05</td>
</tr>
<tr>
<td>T-MAX 400</td>
<td>0.58 ± 0.03, 0.72 ± 0.03</td>
</tr>
<tr>
<td>T-MAX P3200 (EI 1600)</td>
<td>0.86 ± 0.03, 1.00 ± 0.06</td>
</tr>
<tr>
<td>T-MAX P3200 (EI 3200)</td>
<td></td>
</tr>
<tr>
<td>XTOL</td>
<td></td>
</tr>
<tr>
<td>TRI-X Pan</td>
<td>0.53 ± 0.03, 0.70 ± 0.05</td>
</tr>
<tr>
<td>PLUS-X 125</td>
<td>0.46 ± 0.04, 0.70 ± 0.05</td>
</tr>
<tr>
<td>T-MAX 100</td>
<td>0.62 ± 0.03, 0.80 ± 0.03</td>
</tr>
<tr>
<td>T-MAX 400</td>
<td>0.57 ± 0.03, 0.72 ± 0.03</td>
</tr>
<tr>
<td>T-MAX P3200 (EI 1600)</td>
<td>0.74 ± 0.03, 0.83 ± 0.06</td>
</tr>
<tr>
<td>T-MAX P3200 (EI 3200)</td>
<td></td>
</tr>
</tbody>
</table>
SAFE HANDLING OF PHOTOGRAPHIC CHEMICALS


• Packages of Kodak photographic chemicals have precautionary labels when necessary. Always read the labels and follow the instructions carefully. Also read the Material Safety Data Sheets (MSDSs) for the chemicals for precautionary information.*

• Keep the darkroom, processing area, and mixing room clean. Clean up spilled chemicals promptly.

• Use personal protective equipment, such as a waterproof apron and impervious gloves made of a material such as Neoprene or nitrile, when you handle solutions. Always wear goggles or safety glasses when you mix solutions from concentrates.

• Avoid skin contact with chemicals. Some photographic solutions, especially developers, can cause allergic skin reactions. See KODAK Publication No. J-98A, Safe Handling of Photographic Processing Chemicals.

• Keep chemical solutions out of your mouth. Never start a siphoning action with your mouth. Do not eat or drink in a room where chemicals are mixed or used.

• Maintain proper ventilation in the mixing room and processing area.

• Store chemicals and processing solutions safely. Keep them out of the reach of children.


* You can obtain MSDSs for Kodak chemicals from the Kodak website at www.kodak.com/go/MSDS. You will need to know the catalog (CAT) numbers for the chemicals when you request MSDSs.
WORKSHEET 1

CALCULATION OF CONTRAST INDEX

1. Measure the densities of your control strip in the center of the D-min, TD, LD, HD, and D-max steps with a densitometer in the visual mode.

2. Calculate the contrast index of your control strip by using one of the following formulas. The first formula has more steps, but it will give you an answer that is more accurate than the second formula will provide. Record the densities of each step in the appropriate boxes, and then perform the calculations.

**FORMULA 1**

\[
\text{Contrast Index} = 0.267 \times D_{\text{min}} - 0.969 \times TD + 0.454 \times LD + 0.183 \times HD - 0.039 \times D_{\text{max}} + 0.128
\]

**FORMULA 2**

\[
\text{Contrast Index} = \frac{\text{TD} - \text{HD}}{2.26} + 0.10
\]

**CALCULATION OF SPEED**

To calculate the speed value of your control strip, record the densities of TD and D-min in the boxes below, and then perform the calculations.

\[
140.9 \times \left[ \frac{\text{TD}}{\text{D-min}} - 335 \right] = \text{Speed}
\]
Calculate Your Variations from Aim

<table>
<thead>
<tr>
<th>Contrast Index</th>
<th>Variation from Aim (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 0.58*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed</th>
<th>Variation from Aim (Speed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 355†</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D-min</th>
<th>Variation from Aim (D-min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 0.06‡</td>
<td></td>
</tr>
</tbody>
</table>

Plot Your Variations from Aim: Plot differences that are **larger** than the corresponding aim values (+ values) **above** the aim line, and those that are **smaller** than the aim values (– values) **below** the line.

---

* 0.58 is the contrast-index aim for printing negatives with a diffusion enlarger; use 0.43 if you will print negatives with a condenser enlarger.
† 355 is the speed-value aim for a replenished process for producing negatives that you will print with a diffusion enlarger; your speed value may be slightly higher when you use fresh developer. The speed-value aim for producing negatives for printing with a condenser enlarger will be between 340 and 350. The speed value is not an ISO/ASA speed.
‡ Use 0.09 as your aim for D-min if you process film in KODAK DURAFLO RT Developer Replenisher.